Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities

نویسندگان

چکیده

In this paper, we study the recently proposed fractional-order operators with general analytic kernels. The kernel of these is a locally uniformly convergent power series that can be chosen adequately to obtain family fractional and, in particular, main existing derivatives. Based on conditions for Laplace transform operators, some new results are obtained—for example, relationships between Riemann–Liouville and Caputo derivatives inverse operators. Later, employing representation product two functions, determine form calculating its derivative; result essential due connection derivative Lyapunov functions. addition, other developed, leading Lyapunov-like theorems direct method serves prove asymptotic stability sense FOB-stability concept introduced, which generalizes classical Mittag–Leffler wide class systems. Some inequalities established kernels, generalize others literature. Finally, via convex functions presented, whose importance lies avoiding calculation analysis dynamical illustrative examples given.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of fractional-order nonlinear Systems via Lyapunov method

‎In this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov‎ ‎method‎. ‎To examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

stability analysis of fractional-order nonlinear systems via lyapunov method

‎in this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of lyapunov‎ ‎method‎. ‎to examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability

Stability of fractional-order nonlinear dynamic systems is studied using Lyapunov direct method with the introductions of Mittag–Leffler stability and generalized Mittag–Leffler stability notions. With the definitions of Mittag–Leffler stability and generalized Mittag–Leffler stability proposed, the decaying speed of the Lyapunov function can bemore generally characterized which include the exp...

متن کامل

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

Mittag-Leffler stability of fractional order nonlinear dynamic systems

In this paper we propose the definition of Mittag-Leffler stability and introduce the fractional Lyapunov direct method. Then we provide the fractional comparison principle. Third, we extend the application of Riemann-Liouville fractional systems by using Caputo fractional systems. Finally, an illustrative example is provided as a proof of concept. keywords Fractional order dynamic system, Nona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9172084